2,791 research outputs found

    Nano-cathodoluminescence reveals the effect of electron damage on the optical properties of nitride optoelectronics and the damage threshold

    Get PDF
    Nano-cathodoluminescence (Nano-CL) reveals optical emission from individual InGaN quantum wells for applications in optoelectronic devices. We show the luminescent intensity decays over time with exposure to the electron beam for energies between 80 and 200 keV. Measurements of the CL intensity over time show an exponential decline in intensity, which we propose is due to the formation of nitrogen Frenkel defects. The measured CL damage decreases with reductions in the electron accelerating voltage and we suggest that the electron induced structural damage may be suppressed below the proposed damage threshold. The electron beam induced damage leads to a non-radiative region that extends over the measured minority carrier diffusion length. Nano-CL may thus serve as a powerful technique to study III-nitride optoelectronics.This work was carried out with the support of the United Kingdom Engineering and Physical Sciences Research Council under Grant Nos. EP/NO17927/1 and EP/J003603/1. R. Oliver acknowledges funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013) ERC grant agreement number 279361 (MACONS) and the from the Royal Academy of Engineers/Leverhulme Trust senior research fellowship

    Mammographic density does not correlate with Ki-67 expression or cytomorphology in benign breast cells obtained by random periareolar fine needle aspiration from women at high risk for breast cancer

    Get PDF
    BACKGROUND:Ki-67 expression is a possible risk biomarker and is currently being used as a response biomarker in chemoprevention trials. Mammographic breast density is a risk biomarker and is also being used as a response biomarker. We previously showed that Ki-67 expression is higher in specimens of benign breast cells exhibiting cytologic atypia that are obtained by random periareolar fine needle aspiration (RPFNA). It is not known whether there is a correlation between mammographic density and Ki-67 expression in benign breast ductal cells obtained by RPFNA.METHODS:Included in the study were 344 women at high risk for developing breast cancer (based on personal or family history), seen at The University of Kansas Medical Center high-risk breast clinic, who underwent RPFNA with cytomorphology and Ki-67 assessment plus a mammogram. Mammographic breast density was assessed using the Cumulus program. Categorical variables were analyzed by ?2 test, and continuous variables were analyzed by nonparametric test and linear regression.RESULTS:Forty-seven per cent of women were premenopausal and 53% were postmenopausal. The median age was 48 years, median 5-year Gail Risk was 2.2%, and median Ki-67 was 1.9%. The median mammographic breast density was 37%. Ki-67 expression increased with cytologic abnormality (atypia versus no atypia; P = 0.001) and younger age (=50 years versus >50 years; P = 0.001). Mammographic density was higher in premenopausal women (P = 0.001), those with lower body mass index (P < 0.001), and those with lower 5-year Gail risk (P = 0.001). Mammographic density exhibited no correlation with Ki-67 expression or cytomorphology.CONCLUSION:Given the lack of correlation of mammographic breast density with either cytomorphology or Ki-67 expression in RPFNA specimens, mammographic density and Ki-67 expression should be considered as potentially complementary response biomarkers in breast cancer chemoprevention trials

    Nemo: a computational tool for analyzing nematode locomotion

    Get PDF
    The nematode Caenorhabditis elegans responds to an impressive range of chemical, mechanical and thermal stimuli and is extensively used to investigate the molecular mechanisms that mediate chemosensation, mechanotransduction and thermosensation. The main behavioral output of these responses is manifested as alterations in animal locomotion. Monitoring and examination of such alterations requires tools to capture and quantify features of nematode movement. In this paper, we introduce Nemo (nematode movement), a computationally efficient and robust two-dimensional object tracking algorithm for automated detection and analysis of C. elegans locomotion. This algorithm enables precise measurement and feature extraction of nematode movement components. In addition, we develop a Graphical User Interface designed to facilitate processing and interpretation of movement data. While, in this study, we focus on the simple sinusoidal locomotion of C. elegans, our approach can be readily adapted to handle complicated locomotory behaviour patterns by including additional movement characteristics and parameters subject to quantification. Our software tool offers the capacity to extract, analyze and measure nematode locomotion features by processing simple video files. By allowing precise and quantitative assessment of behavioral traits, this tool will assist the genetic dissection and elucidation of the molecular mechanisms underlying specific behavioral responses.Comment: 12 pages, 2 figures. accepted by BMC Neuroscience 2007, 8:8

    The phylogenetically-related pattern recognition receptors EFR and XA21 recruit similar immune signaling components in monocots and dicots

    Get PDF
    During plant immunity, surface-localized pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs). The transfer of PRRs between plant species is a promising strategy for engineering broad-spectrum disease resistance. Thus, there is a great interest in understanding the mechanisms of PRR-mediated resistance across different plant species. Two well-characterized plant PRRs are the leucine-rich repeat receptor kinases (LRR-RKs) EFR and XA21 from Arabidopsis thaliana (Arabidopsis) and rice, respectively. Interestingly, despite being evolutionary distant, EFR and XA21 are phylogenetically closely related and are both members of the sub-family XII of LRR-RKs that contains numerous potential PRRs. Here, we compared the ability of these related PRRs to engage immune signaling across the monocots-dicots taxonomic divide. Using chimera between Arabidopsis EFR and rice XA21, we show that the kinase domain of the rice XA21 is functional in triggering elf18-induced signaling and quantitative immunity to the bacteria Pseudomonas syringae pv. tomato (Pto) DC3000 and Agrobacterium tumefaciens in Arabidopsis. Furthermore, the EFR:XA21 chimera associates dynamically in a ligand-dependent manner with known components of the EFR complex. Conversely, EFR associates with Arabidopsis orthologues of rice XA21-interacting proteins, which appear to be involved in EFR-mediated signaling and immunity in Arabidopsis. Our work indicates the overall functional conservation of immune components acting downstream of distinct LRR-RK-type PRRs between monocots and dicots

    Hypertonic saline reduces inflammation and enhances the resolution of oleic acid induced acute lung injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypertonic saline (HTS) reduces the severity of lung injury in ischemia-reperfusion, endotoxin-induced and ventilation-induced lung injury. However, the potential for HTS to modulate the resolution of lung injury is not known. We investigated the potential for hypertonic saline to modulate the evolution and resolution of oleic acid induced lung injury.</p> <p>Methods</p> <p>Adult male Sprague Dawley rats were used in all experiments. <b><it>Series 1 </it></b>examined the potential for HTS to reduce the severity of evolving oleic acid (OA) induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 12) or hypertonic saline (HTS, n = 12), and the extent of lung injury assessed after 6 hours. <b><it>Series 2 </it></b>examined the potential for HTS to enhance the resolution of oleic acid (OA) induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 6) or hypertonic saline (HTS, n = 6), and the extent of lung injury assessed after 6 hours.</p> <p>Results</p> <p>In <b><it>Series I</it></b>, HTS significantly reduced bronchoalveolar lavage (BAL) neutrophil count compared to Control [61.5 ± 9.08 versus 102.6 ± 11.89 × 10<sup>3</sup> cells.ml<sup>-1</sup>]. However, there were no between group differences with regard to: A-a O2 gradient [11.9 ± 0.5 vs. 12.0 ± 0.5 KPa]; arterial PO2; static lung compliance, or histologic injury. In contrast, in <b><it>Series 2</it></b>, hypertonic saline significantly reduced histologic injury and reduced BAL neutrophil count [24.5 ± 5.9 versus 46.8 ± 4.4 × 10<sup>3</sup> cells.ml<sup>-1</sup>], and interleukin-6 levels [681.9 ± 190.4 versus 1365.7 ± 246.8 pg.ml<sup>-1</sup>].</p> <p>Conclusion</p> <p>These findings demonstrate, for the first time, the potential for HTS to reduce pulmonary inflammation and enhance the resolution of oleic acid induced lung injury.</p

    Choice of geographic unit influences socioeconomic inequalities in breast cancer survival

    Get PDF
    Socioeconomic differences in age-standardised crude survival for women diagnosed with breast cancer during 1991–1999 in England were influenced by the population of the geographic area used to assign the deprivation index, but not by the choice of index

    Experimental manipulation of radiographic density in mouse mammary gland

    Get PDF
    INTRODUCTION: Extensive mammographic density in women is associated with increased risk for breast cancer. Mouse models provide a powerful approach to the study of human diseases, but there is currently no model that is suited to the study of mammographic density. METHODS: We performed individual manipulations of the stromal, epithelial and matrix components of the mouse mammary gland and examined the alterations using in vivo and ex vivo radiology, whole mount staining and histology. RESULTS: Areas of density were generated that resembled densities in mammographic images of the human breast, and the nature of the imposed changes was confirmed at the cellular level. Furthermore, two genetic models, one deficient in epithelial structure (Pten conditional tissue specific knockout) and one with hyperplastic epithelium and mammary tumors (MMTV-PyMT), were used to examine radiographic density. CONCLUSION: Our data show the feasibility of altering and imaging mouse mammary gland radiographic density by experimental and genetic means, providing the first step toward modelling the biological processes that are responsible for mammographic density in the mouse

    Mammographic screening and mammographic patterns

    Get PDF
    Mammography is an effective screening modality for the early detection of breast cancer. The reduction in breast cancer mortality is greater for women aged over 50 at screening than for women aged under 50. Mammography can also contribute to an understanding of the biology of breast cancer. Screening trials provide good evidence for the dedifferentiation of a cancer as it develops over time, and the age dependency of this dedifferentiation explains much of the age difference in the effectiveness of screening. Mammographic density is an important predictor of future breast cancer risk, and has potential as an early endpoint in breast cancer prevention trials. Mammographic density is also an important determinant of mammographic screening sensitivity
    • …
    corecore